Clinical Manifestations and Outcomes of Older patients with COVID-19: A Comprehensive Review

Author names: Jeong Eun Lee¹, Da Hyun Kang¹, So-Yun Kim¹, Duk Ki Kim¹, Song I Lee¹

Affiliations: ¹ Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Internal Medicine, Chungnam National University Hospital, Chungnam national university school of medicine, Daejeon, Republic of Korea

Corresponding Author: Song I Lee

Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Internal Medicine, Chungnam National University Hospital, Chungnam national university school of medicine, Munhwaro 282, Daejeon, Jung gu, 35015, Republic of Korea, Tel: +82-042-280-6816

E-mail: songi_cnu@cnu.ac.kr

Running title: Review of older patients with COVID-19
Authors’ Contributions

Conceptualization: Jeong Eun Lee, Song I Lee, Methodology: Song I Lee

Formal analysis: Song I Lee

Data curation: Jeong Eun Lee, Da Hyun Kang, So-Yun Kim, Duk Ki Kim, Song I Lee

Validation: Jeong Eun Lee, Song I Lee

Investigation: Jeong Eun Lee, Song I Lee

Writing - original draft preparation: Jeong Eun Lee, Song I Lee

Writing - review and editing: Jeong Eun Lee, Da Hyun Kang, So-Yun Kim, Duk Ki Kim, Song I Lee

All authors have approved the final manuscript.
Clinical Manifestations and Outcomes of Older patients with COVID-19: A Comprehensive Review

Abstract

The consequences of coronavirus disease 2019 (COVID-19) are particularly severe in older adults with a disproportionate number of severe and fatal outcomes. Therefore, this integrative review aimed to provide a comprehensive overview of the clinical characteristics, management approaches, and prognosis of older patients diagnosed with COVID-19. Common clinical presentations in older patients include fever, cough, and dyspnea. Additionally, preexisting comorbidities, especially diabetes and pulmonary and cardiovascular diseases, were frequently observed and associated with adverse outcomes. Management strategies varied, however, early diagnosis, vigilant monitoring, and multidisciplinary care were identified as key factors for enhancing patient outcomes. Nonetheless, the prognosis remains guarded for older patients, with increased rates of hospitalization, mechanical ventilation, and mortality. However, timely therapeutic interventions, especially antiviral and supportive treatments, have demonstrated some efficacy in mitigating the severe consequences in this age group. In conclusion, while older adults remain highly susceptible to severe outcomes from COVID-19, early intervention, rigorous monitoring, and comprehensive care can play a pivotal role in improving their clinical outcomes.

Keywords: COVID-19, Older patients, Prognosis
Introduction

Coronavirus disease 2019 (COVID-19) is an infectious illness caused by the severe acute respiratory syndrome coronavirus 2. It was initially detected in Wuhan, China in December 2019, and quickly became a global pandemic. As of July 5, 2023, the World Health Organization (WHO) has reported 767,726,861 confirmed cases of COVID-19 globally, with 6,948,764 deaths. Factors associated with COVID-19 mortality include older age; male sex; underlying health conditions; laboratory biomarkers such as lymphocyte count, serum lactate dehydrogenase (LDH), and C-reactive protein (CRP) levels; and a high viral load during hospitalization. Among these factors, older age is well recognized to be associated with increased severity and higher mortality rates.

As of July 5, 2023, the Republic of Korea has reported 32,256,154 confirmed cases of COVID-19, with 35,071 deaths. According to the Korea Disease Control and Prevention Agency, the percentage of deaths has increased in older age groups (60-69 years: 11.36%, 70-79 years: 22.69%, ≥ 80 years: 59.64%) accompanied by higher fatality rates (60-69 years: 0.11%, 70-79 years: 0.43%, ≥ 80 years: 1.85%). An age range of 60–65 years or older is defined as the criterion for older people associated with poor prognosis in COVID-19 patients. Therefore, this review was conducted to explore the characteristics and prognosis of older patients diagnosed with COVID-19.

This review is crucial for a thorough examination of the clinical manifestations, treatments, and prognostic outcomes in older patients infected with COVID-19. It aims to analyze the ways in which the virus impacts this vulnerable age group, focusing on their symptoms, treatment responses, and factors influencing health outcomes. This in-depth analysis is helpful for improving our understanding of COVID-19's dynamics in older patients, which is essential for developing more effective clinical strategies and public health policies specifically designed
for this high-risk group.

Clinical features and common comorbidities

Symptoms such as fever, cough, dyspnea, myalgia, fatigue, diarrhea, and an asymptomatic presentation can manifest in older patients with COVID-1912. Moreover, the frequency of these symptoms varies across studies. In a study conducted by Li et al.13, focusing on patients with COVID-19 aged ≥ 60 years, commonly observed symptoms were fever (78.9%), cough (49%), and dyspnea (31.9%). Similarly, a systematic review and meta-analysis by Singhal et al. on older patients with COVID-19 revealed that fever, cough, and dyspnea were common symptoms14. Moreover, when comparing younger and older patients, a higher occurrence of dyspnea15 and shortness of breath16 was observed among older patients.

Furthermore, the older patient population has a higher prevalence of multimorbidity, characterized by the coexistence of multiple underlying health conditions17,18. The prevalence of one or more comorbidities was approximately 81% among older patients, with hypertension, diabetes, and cardiovascular disease being most common 14. Similarly, in other studies, older patients had a higher prevalence of hypertension, diabetes, coronary heart disease, and chronic obstructive lung disease16,19.

Laboratory and radiologic findings

Older patients with COVID-19 often have different laboratory findings than younger patients. For example, lymphopenia and leukopenia are frequently observed in older patients12,14, along with elevated CRP levels12. In a study by Wei et al.20, older patients had higher levels of neutrophils, CRP, aspartate aminotransferase (AST), LDH, glucose, blood urea nitrogen, and
creatinine, but lower counts of lymphocytes, hemoglobin, and platelets than younger and middle-aged patients. In Ibrahim's study21, patients with COVID-19 aged ≥ 65 years had higher neutrophil counts and lower lymphocyte counts. They also showed increased levels of creatinine, creatine kinase MB, glucose, LDH, bilirubin, D-dimer, and erythrocyte sedimentation rate compared with younger patients. Additionally, Liu et al.’s study22 revealed significant variations in lymphocyte decrease and monocyte increase among different age groups, with leukocytosis and lymphopenia being particularly prominent in older patients.

On radiological evaluation, the predominant manifestations of COVID-19 often involve airspace abnormalities such as consolidations or ground-glass opacities (GGO)23. Figure 1 illustrates examples of the radiological findings of COVID-19. These are typically bilateral, situated peripherally, and primarily found in the lower lung fields23. Specifically, in older patients, bilateral lung infiltration is the most observed feature14. In Statsenko's study24, increasing age was associated with greater lung involvement on radiologic images, and cases with GGO were more frequently observed. In a study by Sano et al.25, computed tomography scans of patients with COVID-19 aged ≥ 75 years predominantly showed non-segmental, peripherally dominant GGO. However, when comparing older and younger patients, some studies have highlighted cases wherein unilateral findings were more prevalent19 or where imaging results showed no significant age-related differences26.

Treatment and prevention

Older adults16,27,28, unvaccinated individuals29,30, and those with certain medical conditions31-33 face a higher risk of severe COVID-19. Although vaccination reduces this risk, some vaccinated individuals, particularly those > 65 years of age or with other risk factors, may benefit from treatment upon infection.
Figure 2 illustrates an overview of the treatment for patients with COVID-19. In non-hospitalized patients with mild-to-moderate illness, treatment typically involves symptom management combined with the administration of ritonavir-boosted nirmatrelvir (Paxlovid)34-36 or remdesivir37,38. Cases wherein these two drugs are unfeasible, molnupiravir may be considered34. In a study34 involving patients with COVID-19 residing in nursing homes with an average age of 84.8 years, both molnupiravir and paxlovid reduced hospitalizations, ICU admissions, mortality, and the need for invasive mechanical ventilation (MV) compared to patients not treated with antiviral agents. Furthermore, initiating treatment within five days of symptom onset appears to offer greater risk reduction.

However, in hospitalized patients, the treatment approach varies according to disease severity. For patients who do not require an oxygen supply, neither dexamethasone nor other systemic corticosteroids are recommended39; however, remdesivir may be considered40. Moreover, remdesivir can be administered in patients requiring minimal conventional oxygen, 40,41, however, most patients requiring conventional oxygen may benefit from either a combination of dexamethasone and remdesivir41 or dexamethasone monotherapy39,42. According to a recent review by the Cochrane Library40, remdesivir administration in patients with moderate-to-severe COVID-19 resulted in a slight promotion of clinical improvement within 28 days and indicated a potential reduction in the risk of clinical deterioration. On the other hand, the concurrent use of oral baricitinib43,44 or intravenous tocilizumab45 should be explored in rapidly deteriorating patients. For those requiring interventions such as high-flow nasal cannula (HFNC), non-invasive ventilation (NIV), mechanical ventilation (MV), or extracorporeal membrane oxygenation (ECMO), the addition of oral baricitinib43,46 or intravenous tocilizumab45,47 to dexamethasone39,42 is feasible. When administered to older patients, both tocilizumab47 and baricitinib46 have been observed to reduce the risk of mortality. In a study39
on inpatients with COVID-19 with a median age of 64 years, the use of dexamethasone reduced all-cause mortality and discharge to hospice care, particularly among patients requiring oxygen support, MV, or ECMO. Furthermore, in the absence of contraindications to anticoagulants, the prophylactic dose of heparin48,49 is recommended.

Vaccination is recommended for older adults, and the CDC50 currently endorses the use of the Pfizer, Moderna, and Novavax vaccines. Moreover currently, the Janssen vaccine is not in use. In a study51 involving patients aged \(\geq 70\) years, both the Pfizer and AstraZeneca vaccines demonstrated efficacy in providing protection. Notably, among patients aged \(\geq 80\) years, both vaccines reduced the risk of hospitalization. Whereas the Pfizer vaccine was found to decrease the risk of mortality. Moreover, research52 assessing the effects of vaccination in relation to mortality and deaths associated with COVID-19 in patients aged \(\geq 60\) years revealed that most vaccines had a favorable impact on reducing hospitalizations and deaths. Common side effects of vaccines53 include local and systemic reactions, such as pain at the injection site, fever, fatigue, and headache. Although severe adverse events related to currently available COVID-19 vaccines are extremely rare, they have shown a minor risk of myocarditis54,55 (more prevalent in younger individuals) and thrombosis with thrombocytopenia56,57.

Contribute factors of COVID-19 severity

Older age has consistently been linked to more severe COVID-19 outcomes. According to a systematic review and meta-analysis58, there is a correlation between age and severe outcomes of COVID-19, such as hospitalization, intensive care unit admission, mechanical ventilation, and mortality. Furthermore, in most studies, older age was associated with an increased likelihood of progression to severe or critical conditions16,32,59,60 and a higher fatality rate28,61.
Consequently, the mortality rate among older patients was notably higher than younger patients. This finding reinforces the notion that advanced age is a significant risk factor for COVID-19. In addition to age, several other recognized risk factors contribute to disease severity and potentially fatal outcomes. Certain comorbidities have also been highlighted as contributing factors to COVID-19 outcomes. Conditions such as diabetes, hypertension, cardiovascular diseases, chronic kidney disease, and respiratory illnesses have been consistently reported as risk multipliers for severe or fatal outcomes. Furthermore, smoking, obesity, and immunosuppressed states have shown a tendency to worsen the prognosis. In addition to these comorbidities, laboratory data have provided further insight into the predictors of COVID-19 outcomes. Elevated levels of inflammatory markers such as CRP, D-dimer, intereleukin-6, ferritin, and lactate have been consistently associated with poor outcomes. Moreover, decreased lymphocyte counts indicating a compromised immune response, have been observed in many more severe cases. Abnormalities in liver and kidney function tests may also be associated with poorer outcomes in COVID-19 patients. Additionally, frailty, which is often assessed using frailty scales or indices, has emerged as another significant predictor of adverse outcomes in COVID-19 patients.

Long COVID-19 syndrome

Long COVID-19 syndrome, often referred to as "Post-COVID Conditions" or "Long COVID," designates a range of symptoms that continue for weeks or months beyond the acute phase of a COVID-19 infection or appear after the infection has resolved (Table 1). The array of symptoms associated with long-term COVID-19 syndrome is broad, encompassing both physical and neuropsychiatric manifestations. The commonly reported symptoms are shown in...
Management of long-term COVID-19 is currently symptomatic and supportive. Furthermore, given the diverse symptom presentations, a multidisciplinary approach is often required.

Older patients exhibit a heightened risk of persistent symptoms following COVID-19 as well as the potential exacerbation of chronic conditions. Notably, COVID-19 vaccinations have been suggested to reduce the incidence of long COVID. However, given that this syndrome can exacerbate a patient's frailty, early multidisciplinary interventions coupled with effective symptom management are crucial for older patients. In a study focused on individuals aged ≥ 65, patients were identified using diagnostic codes corresponding to COVID-19, influenza, and related symptoms. Outpatients with Long COVID predominantly exhibited symptoms such as dyspnea, fatigue, palpitations, memory issues, cognitive impairments, sleep disturbances, and loss of taste or smell. The inpatients predominantly experienced dyspnea, fatigue, palpitations, and loss of taste or smell. Based on symptomatology, 16.6% of general patients and 29.2% of inpatients met the criteria for Long COVID syndrome, consistent with findings from other studies.

Conclusion

Older individuals with COVID-19 exhibit distinct clinical features and face significant prognostic challenges. Therefore, a comprehensive understanding of the clinical profiles and effective management strategies is imperative for healthcare professionals to optimize care and enhance outcomes in this vulnerable population. Moreover, continued research efforts are crucial for refining treatment protocols and preventive measures tailored to older patients.
Conflicts of Interest

No potential conflict of interest relevant to this article was reported.

Funding

There was no additional financial support from public or private sources.
References

43. Group RC. Baricitinib in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial and updated meta-analysis. Lancet

Table 1. Long COVID-19 syndrome

<table>
<thead>
<tr>
<th>Title</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Several other terms</td>
<td>- Post-acute sequelae of severe acute respiratory syndrome coronavirus 2 infection(^87) (PASC)</td>
</tr>
<tr>
<td></td>
<td>- Long COVID(^{90-92})</td>
</tr>
<tr>
<td></td>
<td>- Post-COVID syndrome(^{90,93,94})</td>
</tr>
<tr>
<td></td>
<td>- Chronic COVID-19(^92)</td>
</tr>
<tr>
<td></td>
<td>- Post-acute COVID-19(^95)</td>
</tr>
<tr>
<td>Description</td>
<td>A range of symptoms that continue for weeks or months after the acute phase of a COVID-19 infection has resolved.</td>
</tr>
<tr>
<td>Definition(^86)</td>
<td>- World Health Organization (WHO)(^93): Defines "Post-COVID Conditions" as symptoms that appear typically within 3 months after the onset of COVID-19 symptoms and persist for at least 2 months, which cannot be explained by an alternative diagnosis.</td>
</tr>
<tr>
<td></td>
<td>- U.S. Centers for Disease Control and Prevention (CDC)(^90): Defines "Post-COVID Conditions" (also referred to as "Long COVID") as instances where symptoms continue 4 weeks or more following a COVID-19 infection.</td>
</tr>
<tr>
<td></td>
<td>- National Institute for Health and Care Excellence (NICE), UK(^94): Defines "Ongoing symptomatic COVID-19" as COVID-19 symptoms persisting between 4-12 weeks. For symptoms continuing after 12 weeks post-diagnosis of COVID-19 that cannot</td>
</tr>
</tbody>
</table>
be explained by another diagnosis, they use the term "Post-COVID syndrome."

- European Society of Clinical Microbiology and Infectious Diseases (ESCMID): Defines "Long COVID" as symptoms or signs persisting or recurring after 12 weeks from the diagnosis of COVID-19 that cannot be explained by an alternative diagnosis.

- Korea Disease Control and Prevention Agency (KDCA) and Korean Society of Infectious Diseases: Define it as one or more symptoms/signs persisting after 12 weeks from the COVID-19 diagnosis that cannot be attributed to other diseases.

Common Symptoms^{84,89-91}	- Fatigue
	- Breathlessness
	- Joint pain
	- Chest pain
	- Memory and concentration issues (brain fog)
	- Sleep disorders
	- Loss of taste and smell
	- Persistent cough
Management and Treatment^{90,91,95}	- Symptomatic treatment
	- Physical therapy
	- Occupational therapy
	- Mental health support
Figure Legends:

Figure 1. Radiologic findings of older patients with COVID-19

(A, B) Normal lung on radiography and computed tomography (CT), (C, D) ground-glass opacities on chest X-ray and CT, (E, F) consolidation on chest X-ray and CT, and (G, H) fibrosis on chest X-ray and CT.

<table>
<thead>
<tr>
<th>Clinical symptoms</th>
<th>Asymptomatic or pre-symptomatic infection</th>
<th>Mild illness</th>
<th>Moderate illness</th>
<th>Severe illness</th>
<th>Critical illness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institution who was positive for SARS-CoV-2, with no other cold symptoms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPS symptoms, no abscesses or chest disease, or abnormal chest imaging</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower respiratory disease on clinical parameters or imaging, and SpO2 ≤90% on room air</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3DOI: DFOC or norm, FOC (less respiratory rate ≥30, ≥30 breaths or ≥50% oxygen in 40%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respirational failure, organs shock, and/or multiple organ failure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. Treatment of older patients with COVID-19

Antiviral treatment

- Hospitalized adult: Symptomatic
 - Intravenous ribavirin (IV) (Not FDA approved)
 - Interferon alfa-2b (Not FDA approved)

Anti-inflamatory treatment

- Hospitalized adult: Symptomatic
 - Intravenous dexamethasone (IV)
 - Intravenous corticosteroids (IV)
 - Intravenous interleukin-6
 - Intravenous tocilizumab

- Hospitalized adult: Severe illness
 - Intravenous hydrocortisone (IV)
 - Intravenous methylprednisolone (IV)

- Hospitalized adult: Critical illness
 - Intravenous methylprednisolone (IV)
 - Intravenous dexamethasone (IV)
 - Intravenous cyclosporine (IV)
 - Intravenous tocilizumab (IV)