Title: Early use of HFNC in postextubation period: can it reduce reintubation rate?

Prosenjit Mukherjee, Mohanchandra Mandal, Antonio M. Esquinas.

Authors:

1. **Dr. Prosenjit Mukherjee** (MD)
 Associate Professor,
 Department of Anaesthesiology,
 Institute of Post Graduate Medical Education & Research, Kolkata, West Bengal, India.
 Email: docposhu@gmail.com
 Orcid Id: 0000-0002-6228-3769

2. **Dr. Mohanchandra Mandal** (MD)
 Professor,
 Department of Anaesthesiology
 Institute of Post Graduate Medical Education and Research, Kolkata, West Bengal, India.
 Email: drmcmandal@gmail.com
 Orcid ID: 0000-0003-4183-993X

3. **Dr. Antonio M. Esquinas** (MD, PhD, FCCP, FNIV, FAARC)
 Critical Care Specialist and Staff Physician,
 Intensive Care Unit, Hospital Morales, Meseguer, Murcia, Spain.
 Email: antmesquinas@gmail.com
 Orcid ID: 0000-0003-0571-2050

Corresponding Author:

Dr. Mohanchandra Mandal (MD)
Professor,
Department of Anaesthesiology and Critical Care,
Institute of Post Graduate Medical Education and Research, Kolkata, West Bengal, India.
Email: drmcmandal@gmail.com

Category of the article: Letter to the editor.

Running Title: “Effect of HFNC on reintubation rate”

Financial support: No external funding supported the preparation of this manuscript. The authors have no financial and/or personal relationships with other people or organizations that might inappropriately influence our work.
Conflict of Interest: The authors report no conflicts of interest.

Word Count: 549.

Reference: 8.

Figures: 0.

Tables: 0.

Keywords: High flow nasal cannula (HFNC), High flow nasal oxygen (HFNO), Non – invasive ventilation (NIV), Cardiac dysfunction.

Corresponding Author: Dr. Mohanchandra Mandal

Professor,
Department of Anaesthesiology and Critical Care,
Institute of Post Graduate Medical Education and Research, Kolkata, West Bengal, India.
Email: drmcmandal@gmail.com
Orcid ID: 0000-0003-4183-993X

Authors and their individual Contribution:

1. Dr. Prosenjit Mukherjee: Was involved in analysis of the article, writing, and editing the letter.
2. Dr. Mohanchandra Mandal: Was involved in analysis of the article, writing, and editing the letter.
3. Dr. Antonio M. Esquinas: Was involved in analysis of the article, writing, and editing the letter.
Dear Editor,

We have read with much interest the article by Sim et al [1] who observed that cardiac dysfunction was not associated with increased reintubation rate within 72 hours when high flow nasal cannula (HFNC) was applied immediately after planned extubation. The study is indeed a valued addition to medical literature. However, we would welcome the authors’ views for clarity on certain aspects of their study.

Firstly, the ROX-heart rate (ROX-HR) index appears to be a promising tool for early identification of patients at risk of HFNC failure in the post-extubation period². The ROX index (Respiratory rate – OXygenation) is calculated as peripheral oxygen saturation ((SpO₂) over fraction of inspired oxygen (FiO₂), divided by respiratory rate. As the authors have measured parameters such as SpO₂, FiO₂, and heart rate, we are curious whether they had considered ROX-HR index as well.

Secondly, monitoring N-terminal (NT)-pro B-type natriuretic peptide (BNP) i.e., NT-proBNP levels can predict post-extubation respiratory distress during spontaneous breathing trial (SBT)³. A high sensitivity (95 %) and a negative likelihood ratio of 0.09 was observed with the cut-off value of NT-proBNP levels of no greater than 1,000 pg/ml³. We wonder whether the authors had considered monitoring NT-proBNP levels.

Thirdly, some patients on dobutamine support might show elevated ejection fraction despite their underlying cardiac dysfunction. Combined monitoring of BNP and echocardiography can identify cardiac dysfunction patients with better accuracy than either method alone owing to marked additive diagnostic value⁴.
Fourthly, certain independent predictors for reintubation at any time during hospitalization, such as higher simplified acute physiology score (SAPS II score) on admission, higher secretion burden (either suctioning frequency or total amount of secretions in 24 h), higher minute ventilation (either immediately prior to or during the SBT), higher number of previously failed SBTs prior to extubation, and lower diastolic pressure, were already identified. HFNC is associated with lower secretion and less discomfort compared to NIV. The authors assessed disease severity with Acute Physiology and Chronic Health Evaluation (APACHE)-II score and Charlson Comorbidity Index. It would be further interesting to know whether they have also evaluated SAPS II score and the secretion burden.

Fifthly, the early indicators of HFNC failure are persistence of tachypnoea with a respiratory rate higher than 30 breaths/min, thoraco-abdominal asynchrony and lack of improvement in oxygenation at 30 min after initiation of HFNC. It would be further interesting to know whether the authors had considered using these parameters for prediction of HFNC failure.

Lastly, the estimated inspiratory collapse of inferior vena cava (IVC) is reduced by more than 20% during HFNC therapy owing to continuous positive airway pressure (CPAP) effect. Furthermore, HFNC can cause reduction of right heart preload, and improvement in respiratory rate in heart failure patients. We are curious to know whether they had considered measuring IVC collapsibility to corroborate the beneficial effect of HFNC in patients with cardiac dysfunction.

In the current study, the authors have found post-extubation HFNC application to be an effective modality in preventing reintubation in cardiac dysfunction patients. We hope that clarity on the above-mentioned points would add to the evaluation of outcome parameters of this study and further studies, especially well designed, high powered, randomized control trials on the effectiveness of HFNC as a post-extubation bridging therapy in the subset of patients with cardiac dysfunction can be immensely useful.
Financial support: No external funding supported the preparation of this manuscript. The authors have no financial and/or personal relationships with other people or organizations that might inappropriately influence our work.

Conflict of Interest: The authors report no conflicts of interest.

REFERENCES

