
Tai Joon An¹, Ye Jin Lee², Ji Eun Park³, Eung Gu Lee⁴, Youlim Kim⁵, Sung-Yoon Kang⁶, Hyonsoo Joo⁷, Joon Young Choi⁸

¹Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea

²Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.

³Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon 16499, Korea.

⁴Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

⁵Division of Pulmonary and Allergy, Department of Internal Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea

⁶Division of Pulmonology and Allergy, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea

⁷Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea

⁸Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine,
Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

Address for correspondence: Joon Young Choi, MD, PhD

Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

Tel.: +82 10 5313 2937
Fax: +82 32 280 5748
E-mail: tawoe@naver.com

Author Contributions
Conceptualization: An TJ (for Tai Joon An), Kim Y (for Youlim Kim), Choi JY (for Joon Young Choi)
Methodology: Ann TJ, Kim Y, Joo H (for Hyunsoo Joo), Choi JY
Investigation: All authors
Writing-original draft preparation: Ann TJ, Choi JY
Writing-review and editing: All authors
Approval of final manuscript: All authors
With its rapid spread, COVID-19, a novel coronavirus disease, has become a global health problem. More than 507 million confirmed cases and over 6 million fatalities had been reported by April 2022. Various types of clinical deterioration ranging from a minor common cold to severe respiratory failure have been reported in association with this disease. In an observation study, interstitial lung disease (ILD) was observed in chest computed tomography (CT) images of 60% of patients with COVID-19. There is currently no consensus regarding optimal management of patients who show post COVID-19 interstitial change, and only one clinical trial is ongoing. The aim of this study was to focus on the role of systemic corticosteroids in patients with post COVID-19 ILD.

This multicenter retrospective study was conducted in order to analyze patients with post COVID-19 ILD, who were enrolled from eight medical centers in South Korea from July 2021 to April 2022. The definition of post COVID-19 ILD was based on radiologic findings of ILD (including ground glass opacities, reticulation, and consolidation) at least one week after the acute phase of COVID-19 pneumonia, according to physicians’ diagnosis. Data were extracted from electronic medical records from each center. General characteristics including age, sex, body mass index (BMI), hospital days, comorbidities, smoking history, symptoms, vital signs, laboratory findings, oxygen requirements, radiologic findings, ICU stay, and medications were collected. Deterioration on a chest x-ray (CXR) was defined as worsening of a chest x-ray image after admission for 48 hours. Clinical deterioration was defined as composite outcomes including CXR deteriorations, administration/escalation of antibiotics and/or systemic corticosteroids, or oxygen supplement 48 hours or later after hospitalization. A comparison of clinical characteristics and deterioration between corticosteroid non-users and users was performed. Evaluation of the risk of clinical deterioration according to initial steroid use was performed using a binomial regression model, with adjustment for age, sex, and O2 demands. Evaluation of variables associated with clinical deterioration was also
performed using each regression model.

Finally, a total of 46 patients who showed no evidence of COVID-19 reactivation were enrolled and analyzed. The mean duration from the date COVID-19 was confirmed to enrollment was 17.7± 8.9 days. Thirteen patients were steroid non-users, and 33 patients were steroid users. No significant differences in age, sex, BMI, smoking history, comorbidities, symptoms, white blood cell count, C-reactive protein, hospital days, oxygen supplement, radiologic findings, use of antibiotics, ICU admission, and steroid use day were observed between corticosteroid users and non-users. Significant differences in the administration of antibiotics (38.5% vs 6.1%, p=0.02, respectively) and corticosteroids were observed after 48 hours (41.7% vs 3.0%, p<0.01). No significant difference in oxygen supplement (23.1% vs 15.2%, p=0.84) or CXR deterioration (38.5% vs 9.1%, p=0.053) was observed between the two groups. Using a binomial regression model, a more favorable outcome regarding clinical deterioration (OR=0.03, 95%CI [0.02-0.78]), adding antibiotics (OR=0.05, 95%CI [0.01-0.49]), adding corticosteroid (OR=0.05, 95%CI [0.00-0.61]), and CXR deterioration (OR=0.09, 95%CI [0.01-0.66]) was observed for steroid users (Figure 1).

Inflammatory ILD and lung fibrosis, which are severe pulmonary sequelae of COVID-19, have been an increasing concern, and there is no proven treatment. Antifibrotic therapy or corticosteroids have emerged as potential options for treatment of post-COVID-19 pulmonary fibrosis. Myall et al. reported on the clinical effect of corticosteroids in treatment of persistent inflammatory ILD after COVID-195. Srinivas et al. reported on the potential value of antifibrotic therapy in patients with post-COVID19 inflammatory ILD 6. However, there is a lack of data regarding the development of acute exacerbation (AE) in post-COVID19 patients in stable condition without the use of corticosteroids. We suggest the potential for use of systemic corticosteroids as an initial choice in management of AE in patients with post-
COVID-19 inflammatory ILD. Regarding prevention of clinical deterioration and reducing
the need for further therapy by antibiotics and corticosteroids, significant clinical benefits
have been demonstrated in these patients with use of initial systemic corticosteroids.

Many studies regarding persistent lung damage or ILD after COVID19 infection reported
that a good response to this condition was achieved with use of systemic corticosteroid\(^7\). Various stages of lung fibrosis, including migration of inflammatory cells or proliferation of
fibroblasts were observed in association with post-COVID19 inflammatory ILD\(^8,9\). In
addition, according to some studies they were classified radiologically or histopathologically
as organizing pneumonia\(^10,11\). A good response was usually observed after treatment with
systemic corticosteroid. A similar pattern of radiologic findings of post-COVID19 ILD was
observed for the patients enrolled in this study, unless, in comparison, these patients did not
show earlier worsening of the lung condition after COVID19 infection. We assumed that the
reason for the good response to initial treatment with systemic corticosteroid might be
associated with the similar condition reported in the above-mentioned articles.

Therefore, we recommend the administration of systemic corticosteroids in AE patients
who have overcome acute COVID-19 infection. Even though the reactivation of COVID19 is
considered simultaneously, initial use of corticosteroids is reasonable because it is a primary
treatment for severe cases of COVID.
References
