Afatinib mediates autophagic degradation of ORAI1, STIM1, and SERCA2, which inhibits proliferation of non-small cell lung cancer cells

Mi Seong Kim1,2, So Hui Kim1, Sei-Hoon Yang3*, Min Seuk Kim1*

1Department of Oral Physiology, Institute of Biomaterial-Implant, School of Dentistry, Wonkwang University, Iksan, Republic of Korea

2Wonkwang Dental Research Institute, School of Dentistry, Wonkwang University, Iksan, Republic of Korea

3Department of Carbon Convergence Engineering, College of Engineering, Wonkwang University, Iksan, Republic of Korea

4Department of Internal Medicine, School of Medicine, Wonkwang University, Iksan, Republic of Korea

*Co-corresponding authors:
Sei Hoon Yang: Department of Internal Medicine, School of Medicine, Wonkwang University, Iksan, Republic of Korea, 54538, Tel: +82-63-859-2582

Min Seuk Kim: Department of Oral Physiology, and Institute of Biomaterial-Implant, School of Dentistry, Wonkwang University, Iksan, Republic of Korea, 54538, happy1487@wku.ac.kr, Tel: +82-63-850-6997

The manuscript type is Original Article.

Running title: Afatinib inhibits lung cancer cell proliferation
Author contributions

Conceived and designed the analysis: Sei-Hoon Yang*., Mi Seong Kim1,2

Collected the data: Mi Seong Kim1,2, So Hui Kim3.

Contributed data or analysis tools: Mi Seong Kim1,2, So Hui Kim3.

Performed the analysis: Sei-Hoon Yang*., Min Seuk Kim1*., Mi Seong Kim1,2

Wrote the paper: Sei-Hoon Yang*., Min Seuk Kim1*., Mi Seong Kim1,2
Afatinib mediates autophagic degradation of ORAI1, STIM1, and SERCA2, which inhibits proliferation of non-small cell lung cancer cells

Mi Seong Kim1,2¶, So Hui Kim†, Sei Hoon Yang‡, Min Seuk Kim†

1Department of Oral Physiology, Institute of Biomaterial-Implant, School of Dentistry, Wonkwang University, Iksan, Republic of Korea
2Wonkwang Dental Research Institute, School of Dentistry, Wonkwang University, Iksan, Republic of Korea
3Department of Carbon Convergence Engineering, College of Engineering, Wonkwang University, Iksan, Republic of Korea
4Department of Internal Medicine, School of Medicine, Wonkwang University, Iksan, Republic of Korea

‡Co-corresponding authors:
Sei Hoon Yang: Department of Internal Medicine, School of Medicine, Wonkwang University, Iksan, Republic of Korea, 54538, Tel: +82-63-859-2582
Min Seuk Kim: Department of Oral Physiology, and Institute of Biomaterial-Implant, School of Dentistry, Wonkwang University, Iksan, Republic of Korea, 54538, happy1487@wku.ac.kr, Tel: +82-63-850-6997

Running title: Afatinib inhibits lung cancer cell proliferation
Abstract

Background: The expression of calcium signaling pathway molecules is altered in various carcinomas, which are related to the proliferation and altered characteristics of cancer cells. However, changes in calcium signaling in anti-cancer drug resistant cells (bearing a T790M mutation in EGFR) remain unclear.

Methods: Afatinib-mediated changes in the level of SOCE-related proteins and intracellular Ca\(^{2+}\) level in non-small cell lung cancer cells with T790M mutation in the EGFR gene were analyzed using western blot and ratiometric assays, respectively. Afatinib-mediated autophagic flux was evaluated by measuring cleavage of LC3B-II. Flow cytometry and cell proliferation assays were conducted to assess cell apoptosis and proliferation.

Results: The levels of SOCE-mediating proteins (ORAI1, STIM1, and SERCA2) decreased after afatinib treatment in non-small cell lung cancer cells, whereas the levels of SOCE-related proteins did not reduce in gefitinib-resistant non-small cell lung cancer cells (PC-9/GR; bearing a T790M mutation in EGFR). Notably, the expression level of SOCE-related proteins in PC-9/GR cells was reduced similarly responding to afatinib in the absence of extracellular Ca\(^{2+}\). Moreover, extracellular Ca\(^{2+}\) influx through the SOCE was significantly reduced in PC-9 cells pre-treated with afatinib than in the control group. Additionally, afatinib was found to decrease the level of SOCE-related proteins through autophagic degradation, and the proliferation of PC-9GR cells was significantly inhibited by a lack of extracellular Ca\(^{2+}\).

Conclusion: Extracellular Ca\(^{2+}\) plays important roles in afatinib-mediated autophagic degradation of SOCE-related proteins in cells with T790 mutation in the EGFR gene and extracellular Ca\(^{2+}\) is essential for determining anti-cancer drug efficacy.

Keywords: Afatinib, Calcium channels, Non-small cell lung, autophagy
1. Introduction

With an increasing number of studies on the molecular pathology of cancer, various gene mutations in the non-small cell lung cancer (NSCLC) have been discovered, and those gene is being actively studied as an important candidate for the development of targeted therapy. In NSCLCs, epidermal growth factor receptor (EGFR) exon 19 deletion and exon 21 L858R point mutations are most commonly observed (1). In particular, genetic mutations in the EGFR tyrosine kinase domain mediate the sustained activity of EGFR kinase and induce cell proliferation (2). Gefitinib and erlotinib are the first-generation EGFR tyrosine kinase inhibitors (TKIs) that reversibly bind to the ATP-binding site in the EGFR tyrosine kinase domain. These inhibitors are currently used in clinical practice in a few instances. Compared to the first-generation anti-cancer drugs, second-generation drugs, such as afatinib and dacomitinib, irreversibly bind to the tyrosine kinase domain and inhibit EGFR (ErbB1), HER2 (ErbB2), and HER4 (ErbB4) receptor functions (3, 4). Moreover, irreversible binding of afatinib to receptors can effectively inhibit cell proliferation in EGFR mutated cell lines resistant to erlotinib or gefitinib (5).

Calcium ions (Ca$^{2+}$) are an essential secondary messenger in most cells that mediates various physiological cellular activities (6), and abnormal Ca$^{2+}$ signaling are closely related to the development of diseases, including cancer (7). Sarco/Endoplasmic Reticulum ATPase (SERCA) regulates basal level of cytosolic free Ca$^{2+}$ through transporting Ca$^{2+}$ into the ER, and its pharmacological inhibition of SERCA induces depletion of Ca$^{2+}$ in the ER (8). Depletion of Ca$^{2+}$ in the endoplasmic reticulum (ER), which is an intracellular Ca$^{2+}$ storage, mediates extracellular Ca$^{2+}$ influx into the cell, also known as store-operated Ca$^{2+}$ entry (SOCE). During this process, STIM1 acts as a sensor of ER Ca$^{2+}$ store contents (9). In breast cancer cells, ORAI1 induces the influx of intracellular Ca$^{2+}$ by interacting with the plasma membrane protein SPCA2, which leads to cell proliferation. Additionally, ORAI1 regulates cancer cell metastasis, which shows the correlation between Ca$^{2+}$ channel proteins and proliferation and metastasis of cancer cells (10). STIM1 binds to the plasma membrane Ca$^{2+}$ channel, ORAI1, and promotes extracellular Ca$^{2+}$ influx into cells (11). Extracellular Ca$^{2+}$ influx plays important roles in cell survival, cell proliferation, invasiveness (12), and the regulation of the early G1 phase of the cell cycle (13). Mulder et al. reported that afatinib treatment in PC-9 cells regulate the expression of various Ca$^{2+}$ signal-mediated proteins and that the lack of extracellular Ca$^{2+}$ enhances afatinib efficacy against NSCLC cells (14). However, there is a lack of understanding of afatinib-mediated changes in the extracellular Ca$^{2+}$ influx and cytotoxicity according to changes in extracellular Ca$^{2+}$ influx in cells with T790M gene mutation in EGFR.

In this study, autophagic flux and changes in the expression of ORAI1, STIM1, and SERCA2 after afatinib treatment were assessed in PC-9 and gefitinib-resistant PC-9 (PC-9/GR) cells to understand cell responses in the presence and absence of extracellular Ca$^{2+}$. Further, the effects of lack of extracellular Ca$^{2+}$ on afatinib-mediated inhibition of cell proliferation were evaluated.

2. Materials and Methods

2.1. Cell culture and reagents

PC-9 and PC-9/GR cell lines were provided by Dr. Jin-kyung Roh (Asan Medical Center, Asan Medical Institute of Convergence Science and Technology). Cells were cultured in RPMI-1640 medium (Hyclone, Logan, UT, USA) with 10% fetal bovine serum (FBS) and 100 U/mL Penicillin-Streptomycin in a 5% CO$_2$ incubator at 37 °C. Anti-Orai1, -PCNA, goat anti-rabbit HRP secondary antibody, and goat anti-mouse HRP secondary antibody were purchased from Santa Cruz Biotechnology (Dallas, TX,
USA). Anti-LC3B, -STIM1, -SERCA2, -PARP, -β-actin antibodies were purchased from Cell Signaling Technology, Inc. (Danvers, MA, USA). Afatinib was purchased from Selleckchem (Houston, TX, USA), and cyclopiazonic acid (CPA) was purchased from Enzo Life Sciences (Farmingdale, NY, USA). Bafilomycin A and 3-Methyladenine (3-MA) were purchased from Sigma-Aldrich (St. Louis, MO, USA).

2.2. Western blot assay

Cells were collected after centrifuging at 4,000 rpm and 4 °C for 4 min. RIPA buffer (Thermo Scientific, Foster City, CA, USA) containing Protease & Phosphatase Inhibitor (Thermo Scientific) was added to lyse the cells. Proteins were separated using SDS-PAGE and transferred to a PVDF membrane (GE Healthcare, Little Chalfont, Notts, England). The membrane was then blocked using TBS-T mixed with 5% (w/v) skim milk and incubated for 2 h at 4 °C on a rocker, and then washed four times for 10 min each using TBS containing 0.1% tween-20. The membrane was incubated with primary antibody diluted at a ratio of 1:1000 in 5% skim milk solution overnight at 4 °C on a rocker. The following day, the membrane was washed four times for 10 min using TBS containing 0.1% tween-20. Then it was incubated with HRP-conjugated secondary antibody diluted at a ratio of 1:2000 on a rocker for 2 h at 4 °C, and washed again four times for 10 min using TBS containing 0.1% tween-20. The membrane was then treated with a 1:1 mix of SuperSignal West Pico PLUS Luminol/Enhancer solution and SuperSignal West Pico PLUS Stable Peroxide (Thermo Scientific). Protein bands were detected using AzureSpot 2.0 (AzureBiosystems, CA, USA).

2.3. Intracellular Ca2+ ([Ca2+]i) measurement

Fura-2/AM (Sigma Aldrich), which is a fluorescent dye used to detect Ca2+, was used to measure [Ca2+]i. A 1 μM Fura-2/AM solution was added to the cell culture medium in a 5% CO2 incubator at 37 °C. Cell surface was washed briefly using HEPES buffer with a pH of 7.4 and osmotic pressure of 310 mOsm. [Ca2+]i was measured using Fura-2/AM at 340 and 380 nm. Fluorescence at 510 nm was captured using a CCD (charge-coupled device) camera. Captured images were analyzed using MetaFluor software (Molecular Devices, San Jose, CA, USA) and expressed as F340/F380 ratio.

2.4. Flow cytometry

FITC Annexin V Apoptosis Detection Kit with PI (BioLegend, San Diego, CA, USA) was used to assess cell apoptosis. In summary, cells were detached using trypsin-EDTA and washed twice with cold PBS. After cells were washed with cell staining buffer, cells were then incubated with cell staining buffer containing Annexin V-FITC and PI for 15 min in the dark. The stained cells were analyzed using a FACScan analyzer (Becton Dickinson Franklin Lakes, NJ, USA), and a minimum of 20,000 events were analyzed.

2.5. Cell proliferation assay

Cell proliferation was assessed using EZ-CYTOX (Daeil Lab Service Co. Ltd., Seoul, South Korea) according to the manufacturer’s protocol. Cells were plated in a 96-well plate and treated according to the experiment design. The cells were then incubated in a 5% CO2 incubator at 37 °C. After 72 h, EZ-Cytox (10 μL) was added to each well, and cells were incubated at 37 °C and 5% CO2 for 30 min.
Optical density (OD) was measured at 450 nm using iMAX Microplate Reader (Bio-Rad, Hercules, CA, USA).

2.6. Statistical analysis

Origin 2020 software (OriginLab Corporation, Northampton, MA, USA) was used to compare statistical significance between the groups. One-way analysis of variance and t-test were conducted to assess significance, and Tukey’s post hoc test was conducted for post-hoc analysis. p < 0.05 was considered statistically significant. All results were obtained from three or more independent experiments and expressed as mean ± S.D.

3. Results

3.1. Afatinib-mediated alterations in expression of ORAI1, STIM1, and SERCA2 proteins in the presence and absence of extracellular Ca2+

Alterations in the expression of Ca2+ channels and Ca2+-binding proteins in lung cancer cells regulate cell proliferation and apoptosis signaling pathways (15). In particular, expression of STIM1, 2 and ORAI1, 2, and 3, which mediate the extracellular Ca2+ influx in non-excitable cells, were altered in tissues of various cancers, including breast and colorectal cancer (16). We examined the levels of ORAI1, STIM1, and SERCA2, which are directly related to SOCE, after treating PC-9 and PC-9/GR cells with afatinib. PC-9 and PC-9/GR cells were cultured in a normal culture medium (1 mM CaCl2) and Ca2+-free culture medium (0 mM CaCl2), and cells were treated with 0.1 μM afatinib for different lengths of time (0, 24, and 48 h). The whole cell lysates were used to assess the intracellular levels of ORAI1, STIM1, and SERCA2 proteins through western blot assay. In PC-9 cells that were cultured in a normal medium (1 mM CaCl2), intracellular expression of ORAI1, STIM1, and SERCA2 proteins were significantly decreased after 48 h of treatment with afatinib. In contrast, the levels of ORAI1, STIM1, and SERCA2 proteins in PC-9/GR cells were not decreased after afatinib treatment (Figure 1A). In PC-9 and PC-9/GR cells cultured in Ca2+-free medium (0 mM CaCl2), expression of ORAI1, STIM1, and SERCA2 proteins were significantly reduced after afatinib treatment (Figure 1B). These results suggested that a decreased expression of SOCE-mediating proteins by afatinib depends on extracellular Ca2+.

3.2. Reduction in SOCE in PC-9 cells by afatinib

A ratiometric assay using a fluorescent Ca2+ indicator was conducted to confirm the decrease in SOCE based on the reduced levels of ORAI1, STIM1, and SERCA2 proteins in PC-9 cells after afatinib treatment. PC-9 cells cultured in a normal medium (1 mM CaCl2) were treated for 48 h with afatinib (0.1 μM) or DMSO (control). CPA (25 μM) was diluted in a Ca2+-free HEPES buffer (1 mM EGTA) and perfused to cells to induce ER Ca2+ depletion. The cells were then treated with CPA (25 μM) diluted in a normal HEPES buffer (1 mM Ca2+) to measure SOCE. SOCE significantly decreased in experimental group pre-treated with afatinib (0.31031 ± 0.09007; n = 10) compared to that in the control group (0.59053 ± 0.11451; n = 11) (Figure 2).
3.3. Reduced expression of ORAI1, STIM1, and SERCA2 after afatinib treatment depends on autophagy

To confirm that the decrease in ORAI1, STIM1, and SERCA2 expression after afatinib treatment was due to intracellular autophagy, LC3B-II cleavage was assessed at specific time points after treating PC-9 and PC-9/GR cells with afatinib. Afatinib (0.1 μM)-mediated LC3B-II cleavage in PC-9 cells was significantly increased after 1 and 3 h of treatment. However, no significant change was observed in PC-9/GR cells (Figure 3A). After 3 and 6 h of treatment with afatinib, significantly different LC3B-II cleavage levels were observed between PC-9 and PC-9/GR cells (Figure 3A). To further determine the association between decreased expression of ORAI1, STIM1, and SERCA2 and intracellular autophagy activity, bafilomycin A1 (5 nM) and 3-MA (5 mM), which are autophagy inhibitors, were added for the last 1, 3, and 6 h of afatinib (0.1 μM) treatment (ORAI1 for 24 h; STIM1 and SERCA2 for 48 h). Reduced ORAI1, STIM1, and SERCA2 levels were significantly inhibited by bafilomycin A1 and 3-MA treatment (Figure 3B). These findings suggest that a decreased level of SOCE-mediating proteins by afatinib depends on intracellular autophagic degradation.

3.4. Analysis of afatinib-mediated apoptosis in the presence and absence of extracellular Ca^{2+}

We demonstrated that afatinib decreases ORAI1, STIM1, and SERCA2 protein levels in PC-9/GR cells in the absence of extracellular Ca^{2+}. Therefore, we assumed that the absence of extracellular Ca^{2+} would regulate apoptosis of PC-9 and PC-9/GR cells, and flow cytometry was used to test this hypothesis. PC-9 and PC-9/GR cells were cultured in experimental conditions of different calcium concentrations and afatinib treatment times. Apoptosis was then assessed by measuring the fluorescence levels of propidium iodine and FITC. In PC-9 cells, similar to the decreased expression of ORAI1, STIM1, and SERCA2 at 48 h, apoptotic cells were increased by >40% in all conditions, with and without extracellular Ca^{2+}. However, although ORAI1, STIM1, and SERCA2 protein levels were decreased in the absence of extracellular Ca^{2+} in PC-9/GR cells, there was no difference in the percentage of apoptotic cells (Figure 4).

3.5. Lack of extracellular Ca^{2+} enhances the inhibitory effects of afatinib on proliferation of PC-9/GR cells

To determine inhibition of PC-9 and PC-9/GR cell proliferation by afatinib without extracellular Ca^{2+}, the expression of proliferating cell nuclear antigen (PCNA), a marker protein for cell proliferation, and cleavage of poly (ADP-ribose) polymerase (PARP), a marker protein for cytotoxicity, were assessed. In addition, cell proliferation was evaluated by MTT assay. In PC-9 cells, the expression of PCNA was decreased by afatinib regardless of extracellular Ca^{2+}, and PARP cleavage increased with the absence of extracellular Ca^{2+} (Figure 5A). In PC-9/GR cells, PCNA expression was not decreased by afatinib when extracellular Ca^{2+} level was normal. Additionally, intracellular PCNA expression was decreased after 48 h of treatment with afatinib without extracellular Ca^{2+} (Figure 5B). Notably, PARP cleavage in PC-9/GR cells after afatinib treatment was not observed regardless of extracellular Ca^{2+} (Figure 5A). PC-9 and PC-9/GR cells were cultured with and without extracellular Ca^{2+}, and cell proliferation was assessed after 72 h of treatment with afatinib (0.1 μM). The viability of PC-9 cells was reduced by >50% after afatinib (0.1 μM) treatment in all conditions, with and without extracellular Ca^{2+}. The viability of PC-9/GR cells was reduced by 15% after afatinib (0.1 μM) treatment in the presence of extracellular Ca^{2+}. In the absence of extracellular Ca^{2+}, the viability of cells was reduced by >30% after afatinib (0.1
μM) treatment. These findings suggest that the lack of extracellular Ca²⁺ further improved the inhibitory effects of afatinib on PC-9/GR cell proliferation.

4. Discussion

The concentration of intracellular Ca²⁺ is regulated by various intracellular molecules, known as the “calcium-signaling toolkit.” Intracellular calcium ions are precisely controlled spatially and temporally to mediate various cellular physiological activities, including cell proliferation, differentiation, migration, and secretion (6). Moreover, abnormal Ca²⁺ signals are also correlated with the development of various diseases. In particular, abnormal changes in the expression of “calcium-signaling toolkit” proteins were observed in various carcinoma cells, and these changes mediate the induction of tumorigenesis in normal cells, tissue invasion and metastasis of cancer cells, and resistance to anti-cancer drugs (7). In a recent study, Mulder et al. reported that intracellular Ca²⁺ signaling plays a key role in reactivating the mTOR and MAPK signaling pathways inhibited by afatinib in NSCLC cells over time (14). Notably, apoptosis and inhibition of proliferation by afatinib were regulated by extracellular Ca²⁺ level, and the absence of exogenous calcium significantly improved afatinib efficacy (14). Afatinib is an irreversible ErbB receptor family blocker and inhibits ATP-binding against tumors with exon 19 deletion, exon 21 L858R mutation, and exon 20 T790M mutation (17). Additionally, afatinib has high inhibitory activity on cell proliferation against carcinomas resistant to first-generation EGFR-TKIs, including gefitinib and erlotinib (17). However, changes in the “calcium-signaling toolkit” in NSCLC cells resistant to first-generation EGFR-TKIs, such as gefitinib, are not well known. In this study, we assessed the alterations in the expression of SOCE-mediating proteins by afatinib and the resulting changes in the physiological activities in a PC-9 NSCLC cell line and a gefitinib-resistant PC-9/GR cell line (bearing a T790M mutation in EGFR gene). The expression of ORAI1, STIM1, and SERCA2 proteins in PC-9 cells was significantly decreased after treatment with afatinib for 48 h regardless of extracellular Ca²⁺. In cells resistant to gefitinib, there was no significant increase in protein levels after afatinib treatment in an environment with a normal level of extracellular Ca²⁺ (1 mM). However, in the absence of extracellular Ca²⁺, afatinib treatment caused a significant decrease in protein levels (Figure 1). Notably, afatinib, which has obvious inhibitory effects on the proliferation of cells with T790M gene mutation, did not reduce ORAI1, STIM1, and SERCA2 protein levels in PC-9/GR cells, unlike in PC-9 cells in the presence of extracellular Ca²⁺. Additionally, in the absence of extracellular Ca²⁺, protein levels were decreased by afatinib in both PC-9 and PC-9/GR cells. These results indicate that the cellular response to afatinib is altered by a T790M gene mutation and that in PC-9/GR cells, the presence of exogenous calcium determines the levels of proteins that mediate SOCE.

In 2007, Hoyer-Hansen et al. reported that an increase in intracellular Ca²⁺ was fundamental in the early stages of LC3 aggregation and autophagosome formation. It was shown that Ca²⁺-dependent AMP that activated protein kinase (AMPK) inhibits target of rapamycin (mTOR) activity, thereby promoting the autophagic influx (18). We observed an increase in autophagic influx by afatinib in PC-9 cells. However, there was no significant increase in autophagic flux in PC-9/GR cells. This finding is consistent with the decrease in the expression of SOCE-mediating proteins (ORAI1, STIM1, and SERCA2) by afatinib and suggests that afatinib decreases protein levels through autophagic degradation. Furthermore, we observed that afatinib effectively inhibited cell proliferation in PC-9/GR cells without extracellular Ca²⁺ than with extracellular Ca²⁺. This finding shows that extracellular Ca²⁺ plays a crucial role in afatinib-mediated suppression of SOCE-related proteins and regulation of cell proliferation.

The findings of this study suggest that the expression of SOCE-mediating proteins (ORAI1, STIM1,
and SERCA2) are decreased by afatinib-activated autophagic degradation and demonstrates that extracellular Ca^{2+} levels increase the efficacy of afatinib. Therefore, the concentration of extracellular Ca^{2+} is an important factor in increasing the efficiency of anti-cancer treatment using afatinib.

Conflicts of Interest

No potential conflict of interest relevant to this article was reported.

Acknowledgements

We thank Dr. Jin Kyung Rho for providing us with the different NSCLC cell lines. We would like to thank Editage (www. Editage.co.kr) for English language editing.

Funding

This study was funded by the Korean Association for the Study of Targeted Therapy (KASTT) [Korean Association for Lung Cancer (KASTT-20200111)] and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology [NRF-2020R1I1A3052198].
References

Figure 1. Effects of low extracellular Ca\(^{2+}\) on ORAI1, STIM1, SERCA2 expression in afatinib treated PC-9 and PC-9/GR

PC-9 and PC-9/GR cells were incubated with afatinib (0.1 μM) for various durations. Expression of ORAI1, STIM1, and SERCA2 in PC-9 and PC-9/GR cells, cultured in (A) normal culture medium (1 mM CaCl\(_2\)) and (B) Ca\(^{2+}\)-free culture medium (0 mM CaCl\(_2\)), was determined using western blot. β-actin was used as a loading control. The bar graph shows relative fold change of each protein in afatinib-treated cells compared with those in control (no afatinib). Data are represented as mean ± S.D. *\(P < 0.05\) compared with control or between the indicated groups.
Figure 2. Reduction of SOCE in afatinib pre-treated PC-9 cells

PC-9 cells loaded with Fura-2/AM were used to determine the \([\text{Ca}^{2+}]_i\) response to afatinib (0.1 \(\mu\text{M}, 48\) h). \([\text{Ca}^{2+}]_i\) entry via SOCE (\(\Delta F_i\)) was measured by sequential perfusion of CPA (25 \(\mu\text{M}\)) with and without exogenous \(\text{Ca}^{2+}\). Data are represented as the mean \(\pm\) S.D. *\(P < 0.05\).
Figure 3. Afatinib-mediated degradation of ORAI1, STIM1, and SERCA2 is suppressed by autophagy inhibitors, 3-MA and bafilomycin A1

(A) PC-9 and PC-9/GR cells were incubated with afatinib (0.1 μM) for various durations (0, 1, 3, 6, and 36 h). Following the incubation under the indicated conditions, whole cell lysates were used to determine the cleavage of LC3B. β-actin levels were used as loading controls. The bar graph shows the relative fold change of LC3B-II in afatinib-treated cells compared with those in control (no afatinib).

(B) Afatinib (0.1 μM) was added to PC-9 cells. Cells were then treated with 3-MA (5 mM) and bafilomycin A1 (5 nM) for 6, 3, and 1 h and then harvested. Expression of ORAI1 (24 h incubation), STIM1 (48 h incubation), and SERCA2 (48 h incubation) were evaluated using western blot. β-actin levels were used as loading controls. The bar graph shows the relative fold change of each protein in afatinib-treated cells compared with that in control. Data are represented as mean ± S.D. *P < 0.05 compared with control or between the indicated groups.
PC-9 and PC-9/GR cells were incubated with afatinib (0.1 μM) with or without exogenous Ca²⁺ for different time periods (up to 48 h). Following the incubation, cells were stained with Annexin V-FITC and 20,000 cells and apoptotic cells were evaluated using flow cytometry. The percentage of apoptotic cells were presented as mean ± S.D. *P < 0.05 compared with control.
Figure 5. Low extracellular Ca\(^{2+}\) enhances afatinib-mediated reduction of cell proliferation

PC-9 and PC-9/GR cells were cultured under the indicated conditions and were respectively used for (A) western blot and (B) cell proliferation assay. (A) Whole-cell lysates were collected and applied to evaluate expression levels of PCNA and PARP cleavage. β-actin levels were used as loading controls. (B) Following the incubation, cells were fixed and stained to determine cell proliferation. Data are presented as relative to control (1 mM Ca\(^{2+}\) w/o afatinib) and as mean ± S.D. *P < 0.05 compared with control.