1. Rajpurkar P, Lungren MP. The current and future state of AI interpretation of medical images. N Engl J Med 2023;388:1981-90.
6. Nam JG, Park S, Hwang EJ, Lee JH, Jin KN, Lim KY, et al. Development and validation of deep learning-based automatic detection algorithm for malignant pulmonary nodules on chest radiographs. Radiology 2019;290:218-28.
9. Lee S, Yim JJ, Kwak N, Lee YJ, Lee JK, Lee JY, et al. Deep learning to determine the activity of pulmonary tuberculosis on chest radiographs. Radiology 2021;301:435-42.
10. Sung J, Park S, Lee SM, Bae W, Park B, Jung E, et al. Added value of deep learning-based detection system for multiple major findings on chest radiographs: a randomized crossover study. Radiology 2021;299:450-9.
12. Park J, Hwang EJ, Lee JH, Hong W, Nam JG, Lim WH, et al. Identification of active pulmonary tuberculosis among patients with positive interferon-gamma release assay results: value of a deep learning-based computer-aided detection system in different scenarios of implementation. J Thorac Imaging 2023;38:145-53.
15. Hwang EJ, Nam JG, Lim WH, Park SJ, Jeong YS, Kang JH, et al. Deep learning for chest radiograph diagnosis in the emergency department. Radiology 2019;293:573-80.
17. Yun J, Ahn Y, Cho K, Oh SY, Lee SM, Kim N, et al. Deep learning for automated triaging of stable chest radiographs in a follow-up setting. Radiology 2023;309:e230606.
18. Nam JG, Park S, Park CM, Jeon YK, Chung DH, Goo JM, et al. Histopathologic basis for a chest CT deep learning survival prediction model in patients with lung adenocarcinoma. Radiology 2022;305:441-51.
19. Kim H, Goo JM, Lee KH, Kim YT, Park CM. Preoperative CT-based deep learning model for predicting disease-free survival in patients with lung adenocarcinomas. Radiology 2020;296:216-24.
24. Hansell DM, Bankier AA, MacMahon H, McLoud TC, Muller NL, Remy J. Fleischner Society: glossary of terms for thoracic imaging. Radiology 2008;246:697-722.
25. Li Y, Zhang Z, Dai C, Dong Q, Badrigilan S. Accuracy of deep learning for automated detection of pneumonia using chest X-Ray images: a systematic review and meta-analysis. Comput Biol Med 2020;123:103898.
27. Qin ZZ, Ahmed S, Sarker MS, Paul K, Adel AS, Naheyan T, et al. Tuberculosis detection from chest X-rays for triaging in a high tuberculosis-burden setting: an evaluation of five artificial intelligence algorithms. Lancet Digit Health 2021;3:e543-54.
28. Hwang EJ, Lee JS, Lee JH, Lim WH, Kim JH, Choi KS, et al. Deep learning for detection of pulmonary metastasis on chest radiographs. Radiology 2021;301:455-63.
29. Nam JG, Hwang EJ, Kim J, Park N, Lee EH, Kim HJ, et al. AI improves nodule detection on chest radiographs in a health screening population: a randomized controlled trial. Radiology 2023;307:e221894.
30. Jang S, Song H, Shin YJ, Kim J, Kim J, Lee KW, et al. Deep learning-based automatic detection algorithm for reducing overlooked lung cancers on chest radiographs. Radiology 2020;296:652-61.
32. Hong W, Hwang EJ, Lee JH, Park J, Goo JM, Park CM. Deep learning for detecting pneumothorax on chest radiographs after needle biopsy: clinical implementation. Radiology 2022;303:433-41.
34. Tolkachev A, Sirazitdinov I, Kholiavchenko M, Mustafaev T, Ibragimov B. Deep learning for diagnosis and segmentation of pneumothorax: the results on the Kaggle competition and validation against radiologists. IEEE J Biomed Health Inform 2021;25:1660-72.
37. Lee JH, Lee D, Lu MT, Raghu VK, Park CM, Goo JM, et al. Deep learning to optimize candidate selection for lung cancer CT screening: advancing the 2021 USPSTF recommendations. Radiology 2022;305:209-18.
40. Mitsuyama Y, Matsumoto T, Tatekawa H, Walston SL, Kimura T, Yamamoto A, et al. Chest radiography as a biomarker of ageing: artificial intelligence-based, multi-institutional model development and validation in Japan. Lancet Healthy Longev 2023;4:e478-86.
46. Travis WD, Asamura H, Bankier AA, Beasley MB, Detterbeck F, Flieder DB, et al. The IASLC Lung Cancer Staging Project: proposals for coding T categories for subsolid nodules and assessment of tumor size in part-solid tumors in the forthcoming eighth edition of the TNM Classification of Lung Cancer. J Thorac Oncol 2016;11:1204-23.
47. Aokage K, Suzuki K, Saji H, Wakabayashi M, Kataoka T, Sekino Y, et al. Segmentectomy for ground-glass-dominant lung cancer with a tumour diameter of 3 cm or less including ground-glass opacity (JCOG1211): a multicentre, single-arm, confirmatory, phase 3 trial. Lancet Respir Med 2023;11:540-9.
48. Saji H, Okada M, Tsuboi M, Nakajima R, Suzuki K, Aokage K, et al. Segmentectomy versus lobectomy in small-sized peripheral non-small-cell lung cancer (JCOG0802/ WJOG4607L): a multicentre, open-label, phase 3, randomised, controlled, non-inferiority trial. Lancet 2022;399:1607-17.
49. Ahn Y, Lee SM, Noh HN, Kim W, Choe J, Do KH, et al. Use of a commercially available deep learning algorithm to measure the solid portions of lung cancer manifesting as subsolid lesions at CT: comparisons with radiologists and invasive component size at pathologic examination. Radiology 2021;299:202-10.
52. Venkadesh KV, Aleef TA, Scholten ET, Saghir Z, Silva M, Sverzellati N, et al. Prior CT improves deep learning for malignancy risk estimation of screening-detected pulmonary nodules. Radiology 2023;308:e223308.
56. Lee KH, Lee JH, Park S, Jeon YK, Chung DH, Kim YT, et al. Computed tomography-based prognostication in lung adenocarcinomas through histopathological feature learning: a retrospective multicenter study. Ann Am Thorac Soc 2023;20:1020-8.
57. Kim H, Lee JH, Kim HJ, Park CM, Wu HG, Goo JM. Extended application of a CT-based artificial intelligence prognostication model in patients with primary lung cancer undergoing stereotactic ablative radiotherapy. Radiother Oncol 2021;165:166-73.
58. Na KJ, Kim YT, Goo JM, Kim H. Clinical utility of a CT-based AI prognostic model for segmentectomy in non-small cell lung cancer. Radiology 2024;311:e231793.
59. Chen A, Karwoski RA, Gierada DS, Bartholmai BJ, Koo CW. Quantitative CT analysis of diffuse lung disease. Radiographics 2020;40:28-43.
64. Shiraishi Y, Tanabe N, Shimizu K, Oguma A, Shima H, Sakamoto R, et al. Stronger associations of centrilobular than paraseptal emphysema with longitudinal changes in diffusing capacity and mortality in COPD. Chest 2023;164:327-38.
68. Raghu G, Remy-Jardin M, Richeldi L, Thomson CC, Inoue Y, Johkoh T, et al. Idiopathic pulmonary fibrosis (an update) and progressive pulmonary fibrosis in adults: an official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am J Respir Crit Care Med 2022;205:e18-47.
69. Oh AS, Lynch DA, Swigris JJ, Baraghoshi D, Dyer DS, Hale VA, et al. Deep learning-based fibrosis extent on computed tomography predicts outcome of fibrosing interstitial lung disease independent of visually assessed computed tomography pattern. Ann Am Thorac Soc 2024;21:218-27.
70. Chae KJ, Lim S, Seo JB, Hwang HJ, Choi H, Lynch D, et al. Interstitial lung abnormalities at CT in the Korean National Lung Cancer Screening Program: prevalence and deep learning-based texture analysis. Radiology 2023;307:e222828.
71. Lee JE, Chae KJ, Suh YJ, Jeong WG, Lee T, Kim YH, et al. Prevalence and long-term outcomes of CT interstitial lung abnormalities in a health screening cohort. Radiology 2023;306:e221172.
73. Choe J, Hwang HJ, Seo JB, Lee SM, Yun J, Kim MJ, et al. Content-based image retrieval by using deep learning for interstitial lung disease diagnosis with chest CT. Radiology 2022;302:187-97.
75. Walsh SL, Mackintosh JA, Calandriello L, Silva M, Sverzellati N, Larici AR, et al. Deep learning-based outcome prediction in progressive fibrotic lung disease using high-resolution computed tomography. Am J Respir Crit Care Med 2022;206:883-91.
76. Walsh SL, Calandriello L, Silva M, Sverzellati N. Deep learning for classifying fibrotic lung disease on high-resolution computed tomography: a case-cohort study. Lancet Respir Med 2018;6:837-45.
77. Kahn SR, de Wit K. Pulmonary embolism. N Engl J Med 2022;387:45-57.
81. Schmuelling L, Franzeck FC, Nickel CH, Mansella G, Bingisser R, Schmidt N, et al. Deep learning-based automated detection of pulmonary embolism on CT pulmonary angiograms: no significant effects on report communication times and patient turnaround in the emergency department nine months after technical implementation. Eur J Radiol 2021;141:109816.
85. Lee YS, Hong N, Witanto JN, Choi YR, Park J, Decazes P, et al. Deep neural network for automatic volumetric segmentation of whole-body CT images for body composition assessment. Clin Nutr 2021;40:5038-46.
87. Tanimura K, Sato S, Fuseya Y, Hasegawa K, Uemasu K, Sato A, et al. Quantitative assessment of erector spinae muscles in patients with chronic obstructive pulmonary disease: novel chest computed tomography-derived index for prognosis. Ann Am Thorac Soc 2016;13:334-41.
88. Zhou K, Wu F, Zhao N, Zheng Y, Deng Z, Yang H, et al. Association of pectoralis muscle area on computed tomography with airflow limitation severity and respiratory outcomes in COPD: a population-based prospective cohort study. Pulmonology 2025;31:2416782.
90. Kim HJ, Lee H, Lee B, Lee JW, Shin KE, Suh J, et al. Diagnostic value of using epicardial fat measurement on screening low-dose chest CT for the prediction of metabolic syndrome: a cross-validation study. Medicine (Baltimore) 2019;98:e14601.
92. West HW, Siddique M, Williams MC, Volpe L, Desai R, Lyasheva M, et al. Deep-learning for epicardial adipose tissue assessment with computed tomography: implications for cardiovascular risk prediction. JACC Cardiovasc Imaging 2023;16:800-16.
96. Groen AM, Kraan R, Amirkhan SF, Daams JG, Maas M. A systematic review on the use of explainability in deep learning systems for computer aided diagnosis in radiology: limited use of explainable AI? Eur J Radiol 2022;157:110592.
98. Faghani S, Moassefi M, Rouzrokh P, Khosravi B, Baffour FI, Ringler MD, et al. Quantifying uncertainty in deep learning of radiologic images. Radiology 2023;308:e222217.
102. Kim H, Jin KN, Yoo SJ, Lee CH, Lee SM, Hong H, et al. Deep learning for estimating lung capacity on chest radiographs predicts survival in idiopathic pulmonary fibrosis. Radiology 2023;306:e220292.