Tuberc Respir Dis > Volume 45(6); 1998 > Article
Tuberculosis and Respiratory Diseases 1998;45(6):1236-1251.
DOI: https://doi.org/10.4046/trd.1998.45.6.1236    Published online December 1, 1998.
Lung Injury Indices Depending on Tumor Necrosis Factor-alpha Level and Novel 35 kDa Protein Synthesis in Lipopolysaccharide-Treated Rat.
Young Mee Choi, Young Kyoon Kim, Soon Seog Kwon, Kwan Hyoung Kim, Hwa Sik Moon, Jeong Sup Song, Sung Hak Park
Department of Internal Medicine, Division of Pulmonology, College of Medicine, the Catholic University of Korea, Seoul, Korea.
Abstract
BACKGROUND
TNF-alpha appears to be a central mediator of the host response to sepsis. While TNF-alpha is mainly considered a proinflammatory cytokine, it can also act as a direct cytotoxic cytokine. However, there are not so many studies about the relationship between TNF-alpha level and lung injury severity in ALI, particularly regarding the case of ALI caused by direct lung injury such as diffuse pulmonary infection. Recently, a natural defense mechanism, known as the stress response or the heat shock response, has been reported in cellular or tissue injury reaction. There are a number of reports examining the protective role of pre-induced heat stress proteins on subsequent LPS-induced TNF-alpha release from monocyte or macrophage and also on subsequent LPS-induced ALI in animals. However it is not well established whether the stress protein synthesis such as HSP can be induced from rat alveolar macrophages by in vitro or in vivo LPS stimulation. METHODS: We measured the level of TNF-alpha, the percentage of inflammatory cells in bronchoalveolar lavage fluid, protein synthesis in alveolar macrophages isolated from rats at 1, 2, 3, 4, 6, 12, and 24 hours after intratracheal LPS instillation. We performed histologic examination and also obtained histologic lung injury index score in lungs from other rats at 1, 2, 3, 4, 6, 12, 24 h after intratracheal LPS instillation. Isolated non-stimulated macrophages were incubated for 2 h with different concentration of LPS (0, 1, 10, 100 ng/ml, 1, or 10 microgram/ml). Other non-stimulated macrophages were exposed at 43dgrees C for 15 min, then returned to at 37dgrees C in 5% CO2-95% for 1 hour, and then incubated for 2 h with LPS (0, 1, 10, 100ng/ml, 1, or 10 microgram/ml). RESULTS: TNF-alpha levels began to increase significantly at 1 h, reached a peak at 3 h (P<0.0001), began to decrease at 6 h, and returned to control level at 12 h after LPS instillation. The percentage of inflammatory cells (neutrophils and alveolar macrophages) began to change significantly at 2 h, reached a peak at 6 h, began to recover but still showed significant change at 12 h, and showed insignificant change at 24 h after LPS instillation compared with the normal control. After LPS instillation, the score of histologic lung injury index reached a maximum value at 6 h and remained steady for 24 hours. 35 kDa protein band was newly synthesized in alveolar macrophage from 1 hour on for 24 hours after LPS instillation. Inducible heat stress protein 72 was not found in any alveolar macrophages obtained from rats after LPS instillation. TNF-alpha levels in supernatants of LPS-stimulated macrophages were significantly higher than those of non-stimulated macrophages(p0.05). Following LPS stimulation, TNF-alpha levels in supernatants were significantly lower after heat treatment than in those without heat treatment(p0.05). The inducible heat stress protein 72 was not found at any concentrations of LPS stimulation. Whereas the 35 kDa protein band was exclusively found at dose of LPS of 10 microgram/ml. CONCLUSION: TNF-alpha has a direct or indirect close relationship with lung injury severity in acute lung injury or acute respiratory distress syndrome. In vivo and in vitro LPS stimulation dose not induce heat stress protein 72 in alveolar macrophages. It is likely that 35 kDa protein, synthesized by alveolar macrophage after LPS instillation, does not have a defense role in acute lung injury.
Key Words: Tumor Necrosis Factor-alpha
TOOLS
METRICS Graph View
  • 0 Crossref
  •   Scopus
  • 1,325 View
  • 12 Download
Related articles


ABOUT
ARTICLE & TOPICS
Article category

Browse all articles >

Topics

Browse all articles >

BROWSE ARTICLES
FOR CONTRIBUTORS
Editorial Office
101-605, 58, Banpo-daero, Seocho-gu (Seocho-dong, Seocho Art-Xi), Seoul 06652, Korea
Tel: +82-2-575-3825, +82-2-576-5347    Fax: +82-2-572-6683    E-mail: katrdsubmit@lungkorea.org                

Copyright © 2024 by The Korean Academy of Tuberculosis and Respiratory Diseases. All rights reserved.

Developed in M2PI

Close layer
prev next